DF-G3 Long Range Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link

Instruction Manual

Contents

1 Product Description 3
1.1 Models 3
1.2 Overview 3
1.3 Top Panel Interface4
2 Installation Instructions5
2.1 Mounting Instructions 5
2.2 Installing the Fibers
2.3 Fiber Adapters 6
2.4 Wiring Diagrams 6
3 Operating Instructions 7
3.1 Run Mode 7
3.2 Program Mode 7
3.2.1 Output Selection 9
3.2.2 TEACH Selection 9
3.2.3 Response Speed 9
3.2.4 Offset Percent 10
3.2.5 Auto Thresholds 10
3.2.6 Delays/Timers 11
3.2.7 Sensitivity Selection 11
3.2.8 Display Readout 11
3.2.9 Gain Selection 11
3.2.10 Factory Defaults 11
3.3 Remote Input 12
3.4 Sync Master/Slave 12
3.5 Adjust Mode 12
3.5.1 TEACH Procedures 13
3.5.2 Troubleshooting 22
4 IO-Link Interface 24
5 Specifications 25
5.1 Excess Gain Curves 26
5.2 Beam Patterns 28
5.3 Dimensions 30
6 Accessories 31
6.1 Quick-Disconnect Cordsets-Single Output Models 31
7 Banner Engineering Corp. Limited Warranty 33

1 Product Description

Advanced Sensor with Dual Displays for use with Plastic and Glass Fiber Optic Assemblies

- World-class long-range sensing capability, more than $3 \mathrm{~m}(10 \mathrm{ft})$ with opposed mode fibers
- Models with high visibility red or extreme high-power infrared sensing beams available
- Cross-talk avoidance function allows seven inspections in dense sensing point applications
- Energy efficient light resistance enables stable detection in industrial lighting environments
- High power amplifier with small core fibers enables precise position sensing of small components
- Easy to read dual digital displays show both signal level and threshold simultaneously
- Lever action fiber clamp provides stable, reliable and trouble-free fiber clamping
- Simple user interface ensures easy sensor set-up and programming through displays and switches/buttons or remote input teach wire
- Expert TEACH and SET methods ensure optimal gain and threshold for all applications, especially for high speed or low contrast applications
- User has full control over all operating parameters: threshold, Light Operate or Dark Operate, output timing functions, gain level, and response speed
- Thermally stable electronics shortens start-up time and maintains signal stability during operation
- ECO (economy) display reduces amplifier power consumption by 25%
- Sleek 10 mm wide housing mounts to 35 mm DIN rail

WARNING:

- Do not use this device for personnel protection
- Using this device for personnel protection could result in serious injury or death.
- This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A device failure or malfunction can cause either an energized (on) or de-energized (off) output condition.

1.1 Models

Models 1	Sensing Beam Color	Reference Sensing $_{\text {Range }^{2}}$	Channel 1	Channel 2	Connector
DF-G3-KD-2M	Visible Red	3000 mm	IO-Link, push/pull	PNP only output,	$2 \mathrm{~m}(6.5 \mathrm{ft})$ output cable, 4 -wire
DF-G3IR-KD-2M	Infrared, 850 nm	6000 mm			

1.2 Overview

The DF-G3 is an easy-to-use, DIN-rail-mountable fiber optic sensor offering world-class long-range sensing capability. It provides high-performance sensing in long range or precise position sensing applications.

[^0]The sensor's compact housing has dual digital displays (Red/Green) and a bright output LED for easy programming and status monitoring during operation. The sensor features a push-pull primary output which supports IO-link communication, and a multi-function secondary independent PNP output which can be configured as an input for advanced sensor configuration and remote teach.
The DF-G3 features improved temperature compensation compared with previous fiber optic sensors. An accessory clamp is available to secure a bank of connected sensors together on a DIN rail (see Accessories).

Figure 1. DF-G3 IO Link Model Features

1. Output LED
2. $\mathrm{CH} 1 / \mathrm{CH} 2$ Switch
3. RUN/PRG/ADJ Mode Switch
4. Lever Action Fiber Clamp
5. Red Signal Level
6. Green Threshold
7. +/SET/- Rocker Button

1.3 Top Panel Interface

Opening the dust cover provides access to the top panel interface. The top panel interface consists of the RUN/PRG/ADJ mode switch, $\mathrm{CH} 1 / \mathrm{CH} 2$ switch, +/SET/- rocker button, dual red/green digital displays, and output LED.

RUN/PRG/ADJ Mode Switch

The RUN/PRG/ADJ mode switch puts the sensor in RUN, PRG (Program), or ADJ (Adjust) mode.

- RUN mode allows the sensor to operate normally and prevents unintentional programming changes via the +/SET/- rocker button.
- PRG mode allows the sensor to be programmed through the display-driven programming menus (see Program Mode on page 7
- ADJ mode allows the user to perform Expert TEACH/SET methods and Manual Adjust (see Adjust Mode).

$\mathrm{CH} 1 / \mathrm{CH} 2$ Switch (Dual Output Mode)

The $\mathrm{CH} 1 / \mathrm{CH} 2$ switch selects which output's parameters can be accessed and changed in the interface of the display.

+/SET/- Rocker Button

The +/SET/- rocker button is a 3-way button. The +/- positions are engaged by rocking the button left/ right. The SET position is engaged by clicking down the button while the rocker is in the middle position. All three button positions are used during PRG mode to navigate the display-driven programming menu. During ADJ mode, SET is used to perform TEACH/SET methods and $+/-$ are used to manually adjust the threshold(s). The rocker button is disabled during RUN mode, except when using Window SET.

Red/Green Digital Displays

During RUN and ADJ modes, the Red display shows the signal level, and the Green display shows the threshold or the total counts. During PRG mode, both displays are used to navigate the display-driven programming menu.

Dual Output LEDs

The output LEDs provide a visible indication when the associated output is active (conducting).

- 1 represents the Channel 1 output
- 2 represents the Channel 2 output

2 Installation Instructions

2.1 Mounting Instructions

Mount on a DIN Rail

1. Hook the DIN rail clip on the bottom of the DF-G3 over the edge of the DIN rail (1).
2. Push the DF-G3 up on the DIN rail (1).
3. Pivot the DF-G3 onto the DIN rail, pressing until it snaps into place (2).

Mount to the Accessory Bracket (SA-DIN-BRACKET)

1. Position the DF-G3 in the SA-DIN-BRACKET.
2. Insert the supplied M3 screws.
3. Tighten the screws.

Remove from a DIN rail

1. Push the DF-G3 up on the DIN rail (1).
2. Pivot the DF-G3 away from the DIN rail and remove it (2).

2.2 Installing the Fibers

Follow these steps to install glass or plastic fibers.

1. Open the dust cover.
2. Move the fiber clamp forward to unlock it.
3. Insert the fiber(s) into the fiber port(s) until they stop.
4. Move the fiber clamp backward to lock the fiber(s).
5. Close the dust cover.

\Longrightarrow Note: For optimum performance of IR models, if applicable, glass fibers must be used.

2.3 Fiber Adapters

Note: If a thin fiber with less than 2.2 mm outer diameter is used, install the fiber adapter provided with the fiber assembly to ensure a reliable fit in the fiber holder. Align the fibers to the end of the adaptors. Banner includes the adapters with all fiber assemblies.

Fiber Outer Diameter (mm)	Adapter Color
$\varnothing 1.0$	Black
$\varnothing 1.3$	Red
$\varnothing 2.2$	No adapter needed

When connecting coaxial-type fiber assemblies to the amplifier, install the single-core (center) fiber to the Transmitter port, and the multi-core (outer) fiber to the Receiver port. This will result in the most reliable detection.

2.4 Wiring Diagrams

Figure 2. Channel 1 as a Push-Pull discrete output, Channel 2 as PNP discrete output

Figure 3. Channel 1 as a Push-Pull discrete output, Channel 2 as remote input

Note: Open lead wires must be connected to a terminal block.
$\Longrightarrow \quad$ Note: The Channel 2 wire function is user-selectable. The default is independent Light Operate (LO) PNP output. See the Remote Input section for details regarding use as remote input or the Sync Master/Slave section for use as a synchronization output.

3 Operating Instructions

3.1 Run Mode

Run mode allows the sensor to operate normally and prevents unintentional programming changes. The +/SET/- rocker button is disabled during RUN mode, except when using Window SET.

3.2 Program Mode

Program (PRG) mode allows the following settings to be programmed in the DF-G3.

CH 1 Factory Default Settings:

Setting	Factory Default
Out SEL1	LO
tch SEL1	2-pt tch
rESP SPd	2 mS
OFSt Pct1	10 Pct
Auto thr1	oFF
dLY SEL1	oFF
SEnS SEL1	Std
diSP rEAd	diSP 1234
GAin SEL	Auto

Figure 4. CH 1 Program Mode Chart

CH 2 Factory Default Settings:

Setting	Factory Default
Out SEL2	LO
tch SEL2	2-pt tch
OFSt Pct2	10 Pct
Auto thr2	oFF
dLY SEL2	oFF
SEnS SEL2	Std

Figure 5. CH 2 Program Mode Chart

3.2.1 Output Selection [uk 5E: :

Both CH 1 and CH 2 can be programmed for either light operate (LO) or dark operate (DO). The Channel 2 menu includes additional options: Health (Health Mode Alarm), Comp (Complementary Programming), Set (sets Channel 2 wire as a remote input), Mast (selects this unit as the master and then allows you to enter the total number of slaves there will be), Slve (selects this unit as a slave and then allows you to enter this slave address), LED off, LED on and Gate.

3.2.2 TEACH Selection ECH [EL

The DF-G3 can be programmed for one of the following TEACH/SET methods:

- Two-Point TEACH
- Dynamic TEACH
- Window SET
- Light SET
- Dark SET
- Calibration SET

$\Longrightarrow \quad$ Note: A TEACH Selection must be selected by programming before TEACH/SET methods can be used.

3.2.3 Response Speed [ЕFP

The DF-G3 can be programmed for one of the following Response Speeds:

| Description | Response
 Speed | Repetition
 Period | Repeatability | Cross-Talk
 Avoidance | Energy Efficient Light
 Resistance | Maximum
 Range, Red |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range, IR850 ${ }^{4}$ | | | | | | |

3.2.4 Offset Percent

The Offset Percent is used during the Window, Light, or Dark SET methods. The threshold(s) are positioned a programmable \% offset from the taught condition.
The allowable offset percent range varies based on the teach method and sensitivity settings as shown below:

Teach Method	Response Speed	Sensitivity	Offset $\%$ Range
Window Set, Light Set	$500 \mu \mathrm{~s}, 1000 \mu \mathrm{~s}, 2 \mathrm{~ms}, 8 \mathrm{~ms}$, 24 ms	High	1 to 99%
		Standard	2 to 98%
		Low	5 to 95%
Dark Set	$500 \mu \mathrm{~s}, 1000 \mu \mathrm{~s}, 2 \mathrm{~ms}, 8 \mathrm{~ms}$, 24 ms	High	1 to 999%
		Standard	2 to 999%
		Low	5 to 999%

3.2.5 Auto Thresholds RuEathr

Auto Thresholds can be programmed to be ON/OFF. The Auto Thresholds algorithm continuously tracks slow changes in the taught condition(s), and optimizes the threshold(s) to provide for reliable sensing. For Two-Point and Dynamic TEACH, the algorithm optimizes the threshold to be centered between the light and dark conditions. For Window, Light, and Dark SET, the algorithm optimizes the threshold(s) to maintain the programmed Offset Percent from the taught condition.

- After programming Auto Thresholds to ON, it is highly recommended to re-perform the TEACH/SET method
- Manual Adjustments are disabled when Auto Thresholds are ON
- Auto Thresholds are automatically disabled in Calibration SET (see Calibration SET on page 21)
- Severe contamination/changes in the taught condition can prevent the Auto Thresholds algorithm from optimizing the threshold(s). If this occurs, the DF-G3 enters a Threshold Alert or Threshold Error state. See Troubleshooting on page 22 for more explanation.

[^1]

ON/OFF Delays and ON/OFF One-Shot timers can be programmed independently for both CH 1 and CH 2 for a time period between between 1-9999 ms (a value of 0 disables the delay/timer). Figure 6 on page 11 defines how the delays/timers affect the output behavior.
Some combinations of delays/timers are not allowed. The DF-G3 programming menu automatically disables invalid combinations of delays/timers. The following table shows the allowable combinations of delays/timers:

Figure 6. DF-G3 Delays/Timers

	OFF Delay	OFF One-Shot Timer	ON Delay	ON One-Shot Timer
OFF Delay	-	OK	OK	N/A
OFF One-Shot Timer	OK	-	N/A	N/A
ON Delay	OK	N/A	-	OK
ON One-Shot Timer	N/A	N / A	OK	-

3.2.7 Sensitivity Selection [En [5EL I]

The Sensitivity Selection can be programmed independently for CH 1 and CH 2 . Use this setting to increase (lo) or decrease (high) the switch-point hysteresis from the default (std) setting.

- high-High sensitivity. Use this setting for low contrast sensing
- Std—Standard sensitivity
- Lo-Low sensitivity. Use this setting to stabilize the output in high vibration applications

3.2.8 Display Readout 태TTrERA

The readout of the digital displays can be programmed for the following options:

- Signal/Threshold readout - Numeric (1234) or \% (123P)
- ECO mode - Enabled or Disabled (ECO mode dims the displays to reduce current consumption)
- Display Orientation - Normal (1234) or Flipped (ちદてL)

3.2.9 Gain Selection 탠 In CEI

The DF-G3 can operate in Auto Gain mode or the Gain can be fixed to be in Gain Fin 5FL. In Auto Gain, the DF-G3 optimizes the gain during a TEACH/SET method for the presented condition(s). While viewing the fixed gains in the Gain Selection choice list, the DF-G3 will automatically switch to the selected gain and display the measured signal on the Red display. This allows for easy and quick evaluation of the fixed gain mode.

3.2.10 Factory Defaults Frㅌㅏㅐㅔ dEF

The Factory Defaults menu allows the DF-G3 to be easily restored back to original factory default settings (see Factory Default Settings in Program Mode).

3.3 Remote Input

Use the input wire to program the sensor remotely. To program the sensor using the input wire, remote input must be enabled (inPT SEL = SEt). The remote input provides limited programming options (see the figure below). Pulse the remote input according to the figures and the instructions provided in this manual.
\Longrightarrow Note: For NPN models, the remote input pulses are active low as shown in the following figures. For PNP models, the remote input pulses are active high and are inverted from the following figures.

Figure 7. Single Output - Remote Input Flowchart

3.4 Sync Master/Slave

Up to seven DF-G3 sensors may be used together in a single sensing application. To eliminate crosstalk between the sensors, configure one sensor to be the master and the remaining sensors to be the slaves. In this mode, the sensors alternate taking measurements and the response speed is 2 ms .
\Longrightarrow Note: Note: In this mode, all sensors must either be NPN or PNP output models.

1. Configure the first sensor as the Master (inPt SEL = MAST).
2. In the Master sensor set-up, enter the total number of Slave sensors you will be using (tOtL SLAV =1-6).
3. For each Slave sensor used, configure the input as a Slave (inPt SEL = SLVE).
4. Give each Slave its own identifying address (SLAV Addr =1-6).
5. Connect the Input wires of the Master and all of the Slaves together.
\Longrightarrow Note: Note: Giving two Slave sensors the same address will cause them to fire their emitters at the same time in the firing sequence.

RUN PRG ADJ
 3.5 Adjust Mode

Sliding the RUN/PRG/ADJ mode switch to the ADJ position allows the user to perform Expert TEACH/SET methods and Manual Adjustment of the threshold(s).
\Longrightarrow Note: For the Dual Output models, when teaching CH 2 , the gain setting will be the same as the gain setting made during the CH 1 teach. Reteaching CH 1 may invalidate the previous CH 2 teach.

3.5.1 TEACH Procedures

The instruction manual has detailed instructions for these TEACH modes:

- Two-Point TEACH
- Dynamic TEACH
- Window SET
- Light SET
- Dark SET
- Calibration SET

Two-Point TEACH

- Establishes a single switching threshold
- Threshold can be adjusted by using the "+" and "-" rocker button (Manual Adjust)

Two-Point TEACH is used when two conditions can be presented statically to the sensor. The sensor locates a single sensing threshold (the switch point) midway between the two taught conditions, with the Output ON condition on one side, and the Output OFF condition on the other.

The Output ON and OFF conditions can be reversed by using the LO/DO (Light Operate/ Dark Operate) switch.
The Output ON and OFF conditions can be reversed by using the LO/DO (Light Operate/ Dark Operate) switch or through the program interface for the dual output model.

Two-Point TEACH and Manual Adjust

Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Manual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Two-Point TEACH:
Note: TEACH Selection must be programmed to $2 \mathrm{Pt} t \mathrm{tcH}$.

1. Enter Adjust mode.

DF－G3 Long Range Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link

Method	Action	Result
SET Button 5	Set the Mode switch to ADJ．${ }^{\text {RUN PRG ADJ }}$	Display：Red－Signal Level；Green－ Threshold
Remote Input 6	No action is required；sensor is ready for the Two－Point TEACH method	

2．Teach the first condition．

Method	Action		Result			
SET Button	a．Present the first condition． b．Click the SET rocker button．		Display：Flashes＂2Pt tch＂then holds on＂1234 2nd＂			
			EPr	上曰号	234	End
Remote Input	a．Present the first condition． b．Single－pulse the remote input．					

3．Teach the second condition．

Method	Action	Result
SET Button	a．Present the second condition． b．Click the SET rocker button．	TEACH Accepted Displays alternate＂PASS＂and \％ Minimum Difference ${ }^{7}$ ；Sensor returns to Adjust mode
Remote Input	a．Present the second condition． b．Single－pulse the remote input．	－PR55 5 5 明 Pet TEACH Not Accepted Displays alternate＂FAIL＂and \％ Minimum Difference ${ }^{7}$ ；Sensor returns to Adjust mode
		FR H2 In PEt

4．Return to Run mode．

Method	Action	Result
SET Button	Move the Mode switch to RUN	RUN PRG ADJ

Dynamic TEACH

－Teaches on－the－fly
－Establishes a single switching threshold
－Threshold can be adjusted using＂＋＂and＂－＂rocker button（Manual Adjust）
Dynamic TEACH is best used when a machine or process may not be stopped for teaching．The sensor learns during actual sensing conditions，taking multiple samples of the light and dark conditions and automatically setting the threshold at the optimum level．

[^2]

Figure 9. Dynamic TEACH (Light Operate shown)
The output ON and OFF conditions can be reversed using the LO/DO switch.
The Output ON and OFF conditions can be reversed by using the LO/DO (Light Operate/ Dark Operate) switch or through the program interface for the dual output model.

Dynamic TEACH and Manual Adjust

Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Manual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform Dynamic TEACH:
$\Longrightarrow \quad$ Note: TEACH Selection must be programmed to dYn tcH.

1. Enter Adjust Mode.

Method	Action	Result
SET Button 8	Set Mode switch to ADJ	RUN PRG ADJ
Remote Input 9	No action required; sensor is ready for Dynamic TEACH method	Display: Red - Signal Level; Green - Threshold

2. Enter Dynamic TEACH.

Method	Action	Result	
SET Button	Click the SET rocker button	Display: Flashes "dYn tch" then holds on "1234 dYn"	
Remote Input	Single-pulse remote input		

3. Present ON and OFF Conditions.
[^3]DF-G3 Long Range Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link

Method	Action	Result
SET Button	Present ON and OFF conditions	Display: Red - Signal Level; Green - Threshold
Remote Input	Present ON and OFF conditions	12 3n?

4. Exit Dynamic TEACH.

5. Return to RUN Mode.

Method	Action	Result	
SET Button	Move Mode switch to RUN	RUN PRG ADJ	Display: Red - Signal Level; Green - Threshold
Remote Input	No action required; sensor returns to RUN mode automatically		

Window SET

- Sets window thresholds that extend a programmable \% offset above and below the presented condition
- All other conditions (lighter or darker) cause the output to change state
- Sensing window center can be adjusted using "+" and "-" rocker button (Manual Adjust)
- Recommended for applications where a product may not always appear in the same place, or when other signals may appear
- See Program Mode for programming the Offset Percent setting

A single sensing condition is presented, and the sensor positions window thresholds a programmable \% offset above and below the presented condition. In LO mode, Window SET designates a sensing window with the Output ON condition inside the window, and the Output OFF conditions outside the window.

Figure 10. Window SET (Light Operate shown)
10 See Troubleshooting on page 22 for more explanation of the \% Minimum Difference displayed after the Dynamic TEACH method.

Output ON and OFF conditions can be reversed using the LO/DO switch.
The Output ON and OFF conditions can be reversed by using the LO/DO (Light Operate/ Dark Operate) switch or through the program interface for the dual output model.

Window SET and Manual Adjust

Moves sensing window center value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the sensing window center value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Manual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Window SET:
Note: TEACH Selection must be programmed to wind SEt.

1. Enter Adjust Mode

Method	Action	Result
SET Button 11	Set Mode switch to ADJ RUN PRG ADJ	Display: Red - Signal Level; Green Threshold
		1234 3пnn
Remote Input 12	No action required; sensor is ready for Window SET method	

2. SET Sensing Condition

3. Return to RUN Mode
[^4]DF-G3 Long Range Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link

Method	Action	Result	
SET Button	Move Mode switch to Run	RUN PRG ADJ	Display: Red - Signal Level; Green - Window Center (see Figure 11 on page 18 for instructions on how to display
Remote Input	No action required; sensor returns to Run mode automatically		upper and lower thresholds)

Figure 11. Upper and Lower Thresholds

Light SET

- Sets a threshold a programmable \% offset below the presented condition
- Changes output state on any condition darker than the threshold condition
- Threshold can be adjusted using "+" and "-" rocker button (Manual Adjust)
- Recommended for applications where only one condition is known, for example a stable light background with varying darker targets
- See Program Mode for programming the Offset Percent setting

A single sensing condition is presented, and the sensor positions a threshold a programmable \% offset below the presented condition. When a condition darker than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 12. Light SET (Light Operate shown)

Light SET and Manual Adjust

Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Manual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Light SET:

Note: TEACH Selection must be programmed to Lt SEt.

1. Enter Adjust Mode

Method	Action	Result	
SET Button 14	Set Mode switch to ADJ	RUN PRG ADJ	Display: Red - Signal Level; Green - Threshold
Remote Input 15	No action is required; sensor is ready for Light SET method		12] 교

2. SET Sensing Condition

3. Return to RUN Mode

Method	Action	Result
SET Button	Move Mode switch to RUN	RUN PRG ADJ
Remote Input	No action required; sensor returns to RUN mode automatically	Display: Red - Signal Level; Green - Threshold

Dark SET

- Sets a threshold a programmable \% offset above the presented condition
- Any condition lighter than the threshold condition causes the output to change state
- Threshold can be adjusted using "+" and "-" rocker button (Manual Adjust)
- Recommended for applications where only one condition is known, for example a stable dark background with varying lighter targets
- See Program Mode for programming the Offset Percent setting
\Longrightarrow Note: Offset Percent MUST be programmed to Minimum Offset to accept conditions of no signal (0 counts).

A single sensing condition is presented, and the sensor positions a threshold a programmable \% offset above the presented condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

[^5]

Figure 13. Dark SET (Light Operate shown)

Dark SET and Manual Adjust

Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Manual adjustments are disabled when Auto Thresholds are ON

Follow these steps to perform a Dark SET:
Note: TEACH Selection must be programmed to dr SEt.

1. Enter Adjust Mode.

Method	Action	Result	
SET Button 17	Set Mode switch to ADJ	RUN PRG ADJ	Display: Red - Signal Level; Green - Threshold
Remote Input 18	No action required; sensor is ready for Dark SET method	trall	

2. SET Sensing Condition.

[^6]3. Return to RUN Mode.

Method	Action	Result
SET Button	Move Mode switch to RUN	RUN PRG ADJ
Remote Input	No action required; sensor returns to RUN mode automatically	Display: Red - Signal Level; Green - Threshold

Calibration SET

- Sets a threshold exactly at the presented condition
- Threshold can be adjusted using "+" and "-" rocker button (Manual Adjust)

A single sensing condition is presented, and the sensor positions a threshold exactly at the presented condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 14. Calibration SET (Light Operate shown)

Calibration SET and Manual Adjust

Moves switching threshold value up or down to make adjustments

- Slide Mode switch to ADJ to enter Adjust mode
- Press "+" to increase; press "-" to decrease
- GREEN display shows the switching threshold value
- 2 seconds after adjustment, the GREEN display will flash 3 times to confirm
- Slide Mode switch to RUN to complete operation

Remember: Auto Thresholding is automatically disabled in Calibration SET

Follow these steps to perform a Calibration SET:
Note: TEACH Selection must be programmed to CAL SEt.

1. Enter Adjust Mode
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Method } & \text { Action } & \text { Result } \\
\hline \text { SET Button 20 } & \bullet \quad \text { Set Mode switch to ADJ } & \text { RUN PRG ADJ }\end{array}
$$ \begin{array}{l}Display: Red - Signal Level; Green -

Threshold\end{array}\right]\)| Remote Input 21 | No action required; sensor is ready for
 Calibration SET method | |
| :--- | :--- | :--- |

2. SET Sensing Condition

[^7]| Method | Action | Result |
| :---: | :---: | :---: |
| SET Button | - Present sensing condition
 - Click the SET rocker button | Threshold Condition Accepted Displays read "cAL SEt" then flashes "PASS"; Sensor returns to Adjust mode |
| Remote Input | - Present sensing condition
 - Single-pulse the remote input | [RL 5EL PR5S
 Threshold Condition Unacceptable
 Displays read "cAL SEt" then flashes
 "FAIL"; Sensor returns to Adjust mode |
| | | [PL 5EtFRH1 |

3. Return to RUN Mode

Method	Action	Result
SET Button	Move Mode switch to RUN	RUN PRG ADJ
Remote Input	No action required; sensor returns to RUN mode automatically	Display: Red - Signal Level; Green - Threshold

3.5.2 Troubleshooting

Manual Adjustments Disabled

Manual adjustments are disabled when Auto Thresholds are ON. If a manual adjustment is attempted while Auto Thresholds are ON, the Green display will flash Ruta.

Percent Minimum Difference after TEACH

The Two-Point and Dynamic TEACH methods will flash a \% minimum difference on the displays after a PASS or FAIL.

Value	PASS/FAIL	Description
0 to 99%	FAIL	The difference of the taught conditions does not meet the required minimum
100 to 300%	PASS	The difference of the taught conditions just meets/exceeds the required minimum, minor sensing variables may affect sensing reliability
300 to 600%	PASS	The difference of the taught conditions sufficiently exceeds the required minimum, minor sensing variables will not affect sensing reliability
$600 \%+$	PASS	The difference of the taught conditions greatly exceeds the required minimum, very stable operation

Percent Offset after SET

The Window, Dark, and Light SET methods will flash a \% offset on the displays after a PASS or FAIL.

SET Result	\% Offset Meaning
PASS (with \% Offset)	Displays the \% offset used for the SET method
FAIL (with \% Offset)	Displays the minimum required \% offset necessary to PASS the SET method
FAIL (without \% Offset)	Presented condition cannot be used for the SET method

Threshold Alert or Threshold Error

Severe contamination/changes in the taught condition can prevent the Auto Thresholds algorithm from optimizing the threshold(s).

State	Display	Description	Corrective Action
Threshold Alert	Alternates Lhr RLrt Threshold Error LeJund	The threshold(s) cannot be optimized, but the sensor's output will still continue to function	Cleaning/correcting the sensing environment and/or a re-teach of the sensor is highly recommended
Err	The threshold(s) cannot be optimized, and the sensor's output will stop functioning	Cleaning/correcting the sensing environment and/or a re-teach of the sensor is required	

4 IO-Link Interface

IO-Link is a point-to-point communication link between a master device and sensor. Use IO-Link to parameterize sensors and transmit process data automatically.

For the latest IO-Link protocol and specifications, see www.io-link.com.
Each IO-Link device has an IODD (IO Device Description) file that contains information about the manufacturer, article number, functionality etc. This information can be easily read and processed by the user. Each device can be unambiguously identified via the IODD as well as via an internal device ID. Download the DF-G3 Long Range Expert with IO Link's IO-Link IODD package (p / n 18491) from Banner Engineering's website at www.bannerengineering.com.

Banner has also developed Add On Instruction (AOI) files to simplify ease-of-use between the DF-G3 Long Range Expert with IO Link, multiple third-party vendors' IO-Link masters, and the Logix Designer software package for Rockwell Automation PLCs. Three types of AOI files for Rockwell Allen-Bradley PLCs are listed below. These files and more information can be found at www.bannerengineering.com.

Process Data AOls - These files can be used alone, without the need for any other IO-Link AOIs. The job of a Process Data AOI is to intelligently parse out the Process Data word(s) in separate pieces of information. All that is required to make use of this AOI is an EtherNet/IP connection to the IO-Link Master and knowledge of where the Process Data registers are located for each port.

Parameter Data AOIs - These files require the use of an associated IO-Link Master AOI. The job of a Parameter Data AOI, when working in conjunction with the IO-Link Master AOI, is to provide quasi-realtime read/write access to all IO-Link parameter data in the sensor. Each Parameter Data AOI is specific to a given sensor or device.

IO-Link Master AOls - These files require the use of one or more associated Parameter Data AOIs. The job of an IO-Link Master AOI is to translate the desired IO-Link read/write requests, made by the Parameter Data AOI, into the format a specific IO-Link Master requires. Each IO-Link Master AOI is customized for a given brand of IO-Link Master.
Add and configure the relevant Banner IO-Link Master AOI in your ladder logic program first; then add and configure Banner IO-Link Device AOIs as desired, linking them to the Master AOI as shown in the relevant AOI documentation.

5 Specifications

Sensing Beam
DF-G3: Visible red, 635 nm
DF-G3IR: Infrared, 850 nm

Supply Voltage

10 V to 30 V dc Class 2 (10% maximum ripple)
Power and Current Consumption (exclusive of load)
Standard display mode: 960 mW , Current consumption < 40 mA at 24 V dc
ECO display mode: 720 mW , Current consumption $<30 \mathrm{~mA}$ at 24 V dc

Supply Protection Circuitry

Protected against reverse polarity and transient overvoltages
Delay at Power-Up
500 milliseconds maximum; outputs do not conduct during this time
Output Configuration
CH1 = IO-Link, Push/pull
$\mathrm{CH} 2=$ PNP only output or input

Output Rating

100 mA maximum load each output (derate 1 mA per ${ }^{\circ} \mathrm{C}$ above $30^{\circ} \mathrm{C}$)
100 mA max total load current for sensor
OFF-state leakage current: < $5 \mu \mathrm{~A}$ PNP at 30 V dc (N.A. push/pull);
ON-state saturation voltage: < 2 V
Required Overcurrent Protection

WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations.

Overcurrent protection is required to be provided by end product application per the supplied table.
Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply.
Supply wiring leads < 24 AWG shall not be spliced.
For additional product support, go to www.bannerengineering.com.

Supply Wiring (AWG)	Required Overcurrent Protection (Amps)
20	5.0
22	3.0
24	2.0
26	1.0
28	0.8
30	0.5

IO-Link Interface
Supports smart sensor profile: Yes
Baud rate: 38400 bps
Process data widths: 16 bits
IODD files: Provides all programming options of the display, plus additional functionality

Output Protection

Protected against output short-circuit, continuous overload, transient overvoltages, and false pulse on power-up

Construction

Black ABS/polycarbonate alloy (UL94 V-O rated) housing, clear polycarbonate cover

Connections

PVC jacketed $2 \mathrm{~m}(6.5 \mathrm{ft})$ 4-wire integral cable; or integral 4-pin M8/ Pico-style quick disconnect; or 150 mm (6 inch) cable with a 4-pin M12/ Euro-style quick disconnect; or 150 mm (6 inch) cable with a 4-pin M8/ Pico-style quick disconnect

Adjustments

3-way RUN/PRG/ADJ Mode Switch
2-way CH1/CH2 Switch
3-way +/SET/- Rocker Button

- Expert-style teaching (Two-Point and Dynamic TEACH, Light/ Dark/Window/Calibration SET)
- Manually adjust sensitivity (from "+" and "-" rocker button only)
- Response Speed, TEACH Selection, Offset Percent, Auto Thresholds, Delays/Timers, Display Readout, Gain Selection, Factory Defaults (from top panel or remote input)
- Top panel interface lockout (from remote input only)

Indicators
Red 4-digit Display: Signal Level
Green 4-digit Display: Threshold
(In Program Mode, Red and Green displays are used for programming menus)
Amber LED: Output conducting
Environmental Rating
IEC IP50, NEMA 1
Operating Conditions
Temperature: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Storage Temperature: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Humidity: 90% at $+60^{\circ} \mathrm{C}$ maximum relative humidity (non-condensing)
Certifications
CE © © = IO-Link

Response Speed

Description	Response Speed	Repetition Period	Repeatability	Cross-Talk Avoidance	Energy Efficient Light Resistance	Maximum Range, Red ${ }^{22}$	Maximum Range, IR850 ${ }^{23}$
High Speed	$500 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	No	No	1200 mm	2400 mm
Fast	$1000 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	$150 \mu \mathrm{~s}$	Yes	No	1500 mm	3000 mm
Standard	2 ms	$100 \mu \mathrm{~s}$	$180 \mu \mathrm{~s}$	Yes	Yes	1500 mm	3000 mm
Long Range	8 ms	$100 \mu \mathrm{~s}$	$180 \mu \mathrm{~s}$	Yes	Yes	1950 mm	3900 mm
Extra Long Range	24 ms	$100 \mu \mathrm{~s}$	$180 \mu \mathrm{~s}$	Yes	Yes	3000 mm	6000 mm

[^8]
5.1 Excess Gain Curves

Figure 15. Diffuse-PBT16U

Figure 17. Diffuse-PBT46U

Figure 19. Opposed Mode-PIT16U

Figure 16. Diffuse-PBT26U

Figure 18. Diffuse-PBT66U

Figure 20. Opposed Mode-PIT26U

Figure 21. Opposed Mode-PIT46U

\Longrightarrow

> Note: BTC1.13.4ST5M6 glass fiber used for diffuse mode

Figure 23. Diffuse-IR850

Figure 25. Diffuse-LIR1450

\Longrightarrow Note: The length of the fiber optics limits the range for the 8 and 24 ms response speeds.

Figure 22. Opposed Mode-PIT66U

 mode

Figure 24. Opposed Mode—IR850

Figure 26. Opposed Mode-LIR1450

Figure 27. Diffuse-PBT16U

Figure 29. Diffuse-PBT46U

Figure 31. Opposed Mode-PIT16U

Figure 28. Diffuse-PBT26U

Figure 30. Diffuse-PBT66U

Figure 32. Opposed Mode-PIT26U

Figure 33. Opposed Mode-PIT46U

Figure 35. Diffuse-IR850

Figure 37. Diffuse-LIR1450

Figure 34. Opposed Mode-PIT66U

Note: IT.83.3ST5M6 glass fiber used for opposed mode

Figure 36. Opposed Mode-IR850

Figure 38. Opposed Mode-LIR1450

5.3 Dimensions

6 Accessories

DIN-35-..
35 mm DIN Rail

Model	Length
DIN-35-70	70
DIN-35-105	105
DIN-35-140	140

Hole center spacing: 35.1
Hole size: 25.4×5.3

SA-DIN-CLAMP

- Pair of metal DIN rail end stops; slide onto DIN rail at either side of the sensor stack
- Combination (\#2 Phillips, \#8 standard slotted) set screw

SA-DIN-BRACKET-10

- Package of 10 plastic brackets with mounting screws

Hole center spacing: $A=16, B=25.4, C=15.2$
Hole size: $A=\varnothing 3.2, B=\varnothing 3.3, C=\varnothing 4.4$

6.1 Quick-Disconnect Cordsets-Single Output Models

All measurements are listed in millimeters, unless noted otherwise.

4-Pin Threaded M12/Euro-Style Cordsets-Single Ended				
Model	Length	Style	Dimensions	Pinout (Female)
MQDC-406	$1.83 \mathrm{~m}(6 \mathrm{ft})$	Straight		
MQDC-415	4.57 m (15 ft)			
MQDC-430	$9.14 \mathrm{~m}(30 \mathrm{ft})$			
MQDC-450	15.2 m (50 ft)			
MQDC-406RA	$1.83 \mathrm{~m}(6 \mathrm{ft})$	Right-Angle		
MQDC-415RA	4.57 m (15 ft)			
MQDC-430RA	$9.14 \mathrm{~m}(30 \mathrm{ft})$			$2 \text { = White }$
MQDC-450RA	15.2 m (50 ft)			$\begin{aligned} & 3=\text { Blue } \\ & 4=\text { Black } \end{aligned}$

DF-G3 Long Range Expert Dual Display Fiber Amplifier with Dual Discrete Outputs and IO Link

4-Pin Snap-on M8/Pico-Style Cordsets-Single Ended				
Model	Length	Style	Dimensions	Pinout (Female)
PKG4-2	2 m (6.6 ft)	Straight		
PKG4-5	$5 \mathrm{~m}(16.4 \mathrm{ft})$			
PKG4-10	$10 \mathrm{~m}(32.8 \mathrm{ft})$			
PKW4Z-2	2 m (6.6 ft)		29 Typ. \rightarrow	
PKW4Z-5	5 m (16.4 ft)	Right-Angle		$\begin{gathered} 1=\text { Brown } \\ 2=\text { White } \\ 3=\text { Blue } \\ 4=\text { Black } \end{gathered}$

7 Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.
THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.
This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.
Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com.
For patent information, see www.bannerengineering.com/patents.

[^0]: 1 - To order the $150 \mathrm{~mm}(6 \mathrm{in})$ PVC cable model with a 4-pin M8/Pico-style quick disconnect, replace the suffix "2M" with "Q3" in the mode number. For example, DF-G3-KD-Q3.

 - To order the $150 \mathrm{~mm}(6 \mathrm{in})$ PVC cable model with a 4-pin M12/Euro-style quick disconnect, replace the suffix "2M" with "Q5" in the model number. For example, DF-G3-KD-Q5.
 - To order the 4-pin M8/Pico-style integral quick disconnect model, replace the suffix "2M" with "Q7" in the model number. For example, DF-G3-KD-Q7.
 - Models with a quick disconnect require a mating cordset

 2 Excess gain = 1, Long Range response speed, opposed mode sensing. PIT46U plastic fiber used for visible LED models, IT. 83.3 ST5M6 glass fiber used for IR model.

[^1]: 3 Excess gain = 1 (high sensitivity), opposed mode sensing. PIT46U plastic fiber used for visible LED models.
 4 Excess gain $=1$ (high sensitivity), opposed mode sensing. IT.83.3ST5M6 glass fiber used for IR models.

[^2]: 5 SET Button： 0.04 seconds \leq＂Click＂≤ 0.8 seconds
 6 Remote Input： 0.04 seconds $\leq T \leq 0.8$ seconds
 7 See Troubleshooting on page 22 for more explanation of the \％Minimum Difference displayed after the Two－Point TEACH method．

[^3]: 8 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 9 Remote Input: 0.04 seconds $\leq \mathrm{T} \leq 0.8$ seconds

[^4]: 11 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 12 Remote Input: 0.04 seconds $\leq \mathrm{T} \leq 0.8$ seconds
 13 See Troubleshooting on page 22 for more explanation of the \% Offset displayed after the Window SET method

[^5]: 14 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 15 Remote Input: 0.04 seconds $\leq T \leq 0.8$ seconds
 16 See Troubleshooting on page 22 for more explanation of the \% Offset displayed after the Light SET method

[^6]: 17 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 18 Remote Input: 0.04 seconds $\leq \mathrm{T} \leq 0.8$ seconds
 19 See Troubleshooting on page 22 for more explanation of the \% Offset displayed after the Dark SET method

[^7]: 20 SET Button: 0.04 seconds \leq "Click" ≤ 0.8 seconds
 21 Remote Input: 0.04 seconds $\leq \mathrm{T} \leq 0.8$ seconds

[^8]: 22 Excess gain $=1$ (high sensitivity), opposed mode sensing. PIT46U plastic fiber used for visible LED models
 23 Excess gain = 1 (high sensitivity), opposed mode sensing. IT.83.3ST5M6 glass fiber used for IR models.

